بزرگ ترین فاجعه جبری
مترجم: محمد قاسم وحیدی اصل
تاریخ ضرورت اختراع اعداد جدید در پیشرفت قاعده مند تمدن و تحول ریاضیات را نشان می دهد. قصه ی
از دیدگاه امروزی کاملاً مناسب تر است که از استفاده از کلمه ی «موهومی» اظهار تأسف شود و این امر «بزرگ ترین فاجعه جبری» نامیده شود؛ اما به قدری جا افتاده که ریاضیدانان از عهده ی الغای آن برنمی آیند. با این حال استفاده از این کلمه انعکاس دهنده ی ماهیت این مفهوم فریبنده برای ریاضیدانان برجسته ای است که قرن ها پیش می زیستند.
اندیشه ی جذر عددی منفی در اوایل با نفی مطلق روبه رو می شد. بدیهی به نظر می آمد که عددی منفی، مربع نیست و بنابراین نتیجه گرفته شد که چنان ریشه ی دومی بی معنی است. این نگرش برای مدت های طولانی حاکمیت داشت.
شاید قدیمی ترین رویارویی با ریشه دوم عدد منفی در عبارت
نخستین بیان آشکار از دشواری کار با ریشه ی دوم عددی منفی در هند به توسط مهاویره (4)(ح 850 م) داده شد که نوشت: «بنا به ذات اشیا، یک عدد منفی مربع نیست و جذر ندارد». نیکولاس شوکه (5)(1484) و لوکا پاچولی (1494) در اروپا در بین کسانی بود که به نفی موهومی ها ادامه دادند.
مقداری پیشرفت در معرفی اعداد مختلط به جیرولاموکاردانو (1545)، که به جرومه (6) کاردان نیز شهرت دارد در راه حل او برای معادلات درجه سوم نسبت داده می شود؛ هرچند که وی آن ها را «جعلی» تلقی می کرد. افتخار نخستین بار استفاده از ریشه ی دوم عددی منفی در حل مسئله ای که امروزه مشهور است نیز به او داده می شود. این مسئله عبارت است از این که «10 را به دو جزء به گونه ای قسمت کنید که حاصل ضرب ... 40 باشد»، که کاردانو ابتدا می گوید: «آشکارا غیرممکن است»؛ اما سپس، با روحیه ای کاملاً ماجراجویانه، ادامه می دهد که «با این حال» ما به عمل می پردازیم (این موضوع بدون شک نتیجه ی تربیت او به عنوان پزشک است!) به این ترتیب وی
کاردانو موضوع را با گفتن این که این کمیت ها «حقیقتاً پیچیده اند» و این که ادامه ی کار با آن ها «همان قدر ظریف است که بی فایده» خاتمه می دهد.
کاردانو از نماد
بومبلی کار کاردانو را ادامه داد. از معادله ی
اگر
جان والیس در کتاب جبر (1673، با چاپ مجدد در 1693 در مجموعه ی آثار ریاضی) «1600- پرچ (9) مربع» را به یک زبان وابسته و سپس فرض کرد که این عدد به شکل مربعی است به ضلع [160 پرچ مربع=1 جریب انگلیسی]:
در مورد این ضلع چه می توانیم بگوییم؟ نه می توانیم بگوییم که 40 است، نه می توانیم بگوییم که 40- است (زیرا هر یک از آن ها وقتی در خود ضرب شوند، 1600 را به وجود می آورند و نه 1600- را). بلکه این ضلع
فرض کنید که 1+ واحد مثبت مستقیم الخط و
البته این ها چیزی را ثابت نمی کنند. چیزی برای اثبات نیست؛ ما به نمادها و عمل های جبر هر معنا را که اراده کنیم، می دهیم که منجر به سازگاری شود، گرچه چیزی از تعبیر ... ثابت نمی شود، شاید این موضوع از آن مستفاد شود که هیچ نیازی نیست که شخص خود را در وضعیت اسرارآمیزی بر سر هیچ درباره نامگذاری عمدتاً بی مسمای «موهومی ها» سردرگم کند.
تعبیری هندسی که مستقلاً به وسل و آرگان نسبت داده می شود، مبتنی بر این اصل هندسی است که ارتفاع وارد بر وتر مثلثی قائم الزاویه، واسطه ی هندسی بین دو قطعه ای است که به وسیله ی ارتفاع بر وتر ایجاد می شود. در شکل [11]-1،
پی نوشت ها :
1. Eugene w.Hellmich
2. stereometrica
3. Heron of Alexandria
4. Mahavira
5. Nicolas chuquet
6. Jerome
7. radix minus
8. caspar wessel
9. perch واحد اندازه گیری طول، برابربا پنج و نیم یارد.-م.
باومگارت، جان[و دیگران]؛ (1385)، تاریخ جبر، محمد قاسم وحیدی اصل، تهران، انتشارات علمی و فرهنگی، چاپ نخست: بهار 1385
{{Fullname}} {{Creationdate}}
{{Body}}